
Model-based Test Development
with ATML Pad

CATS4D MoD ATS Seminar, March 2021

Chris Gorringe

Technical Director

Spherea UK

chris.gorringe@spherea.co.uk

Ion Neag

Software Architect

Reston Software

ion.neag@restonsoftware.com

ATML Pad is a development environment for test descriptions, using the ATML Test
Description standard format

This presentation discusses the use of standards and software tools in model-based
development of test programs for Automatic Test Equipment (ATE)

Traditional Test Software Development
for Automatic Test Systems

Requirements
Definition

• Form-based
editor

• Document editor

• Flowcharter

Code
Development

• Targets a specific
development
environment:
programing
language, API,
Test Executive

Test Execution

• Run Time
Services

• Signal-oriented
instrument
control

Test Results

2 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Corrections,
optimization

Problem: corrections and optimizations are made in code and not in requirements.
- In time, the code diverges from requirements
- Original requirements become obsolete, can no longer be reused to support code

changes during code maintenance, rehosting, or conversion

Model-Based Systems Engineering

3 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Functional
Behavior

Definition

Require-
ments

Capture

Implemen-
tation Verification

and
Validation

Model-based

• Model must be
precise and
complete

• Visual design,
with multiple
views for
stakeholders

Requirements-
driven

• Full model
traceability to
user
requirements and
system
requirements

Architecture-
centric

• Ensure structural
and functional
integrity

• Full derivation
traceability

Model

The discipline of Model-Based Systems Engineering advocates the use of a common
digital model to support all phases of the System Engineering process

Model-Based Test Development

Model
Development

• Visual design

• Requirements
capture

• Signal and test
definition

• Conversion of
model data

• Reconstruction
from results &
legacy code

• Data validation

• Simulation

Automatic
Code
Generation

• Resource
allocation

• Development
environment
targeting: test
programming
languages, APIs,
Test Executives

Test Execution

• Run Time
Services

• Signal-oriented
instrument
control

Test Results

4 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Closed-loop optimization

Making use of model-based systems engineering principles, the test development
process can be modified as shown.

Model development
Models for UUT, Test Requirements, ITA, Test Station, Instruments, …
Graphical / visual design
Model data import from: EDA, systems simulation, diagnostic modeling,
legacy systems
Model extraction / reconstruction from: test results, non-standard models (ex.
TRD), unstructured legacy data (ex. ATLAS code)
Data validation
Simulation

Automatic code generation
Resource allocation – targeting implementation to a specific ATE
Targeting implementation to a specific test development environment: test
programming languages, APIs, test executives

Test execution
Run-time signal services
Signal-oriented instrument control

Generation of test results
Closed-loop optimization of

Maintenance
Diagnostics
Test

Closed-loop optimization is performed on the Model, not on code. The code is
regenerated automatically.

4

Standards-Based Models for Automatic
Test Systems

5 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

UUT
Models

Signal
Models

Test
Equipment

Models

Automatic
Code

Generation

Resource
Allocation

Test
Program

Reqire-
ments

Capabili-
ties

ATML UUT Description,
Test Description

IEEE 1641 Signal and
Test Definition

ATML Test Station &
Instrument Description

ATML Test
Configuration

Test Results

ATML Test
Results

Signal-oriented
UUT models are

ATE-agnostic

What standard data formats are available for modeling Automatic Test Systems?
• IEEE 1671 ATML (Automatic Test Markup Language)
• IEEE 1641 Signal and Test Definition

Signal-based models tell you what to do, but not how to do it (in terms of instrument
operations). This allows them to be implemented & re-implemented on a variety of
ATE platforms.

Resource Allocation is the selection of an instrument or instrument subsystem for
each signal operation.

ATML Pad

ATML Pad: Development Environment for
UUT Test Models

6 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

IEEE 1671.1
Test

Description

IEEE 1671.3
UUT

Description

UUT Data

Test
Engineer

Product
Engineering

Diagnostic
Engineering

UUT SysML
Models

Diagnostic
Models

Engi-
neering
Analysis

UUT
CAD Files

Test
Program

Test
Data

Analysis

Test Engineering

Test
Documen-

tation

IEEE 1636.1
Test Results

Maintenance

IEEE 1636.2
Maintenance
Action Info.

Data
Valida-

tion

Editor

Validator

Im
p

o
rt

er

Ex
p

o
rt

er
Im

p
o

rt
er

Use cases
• Create UUT and Test Description through test engineering analysis, from UUT data

and
• Import UUT & Test data (limited)
• Validate UUT and Test Description
• Generate test program (automatic code generation, resource allocation, switch

path calculation, …)
• Generate test program documentation
• Input to test data analysis (ex. for test & diagnostic improvements)

ATML Pad is:
• Editor
• Validator
• Data Converter (Import & Export)

6

7 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

On-line design
validation

Graphical test flow
designer

ATML Pad: Development Environment for
UUT Test Models

Form-based
property editor

ATML document
structure

Visual editor features:
• Document structure (tests, test sequences, etc.)
• Item properties
• Graphical design of test flow

• Drag & drop color-coded symbols from toolbox
• Pan & zoom controls

• On-line design validation: missing items, missing connections, and other design
problems are displayed dynamically in the error list. This feature guides beginner
users through the design process, helping them understand and apply the design
rules.

7

8 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Graphical IEEE
1641 signal editor
and simulator (*)

On-line signal
validation

TSF Libraries

Basic Signal
Components

Signal Simulation

ATML Pad and newWaveX-SD: Signal Model
Development

Model Exchange
via IEEE 1641

ATML
Pad

newWaveX-SD (Signal Development) is a graphical design environment for signal-
based test & measurement developed by Spherea Technology. It provides the
facilities to design, build and simulate test signals prior to their inclusion in a test
program.

newWaveX-SD is integrated natively within ATML Pad through the standard format.
• Signal definitions can be viewed and edited in a pop-up windows that displays the

newWaveX-SD signal editor.
• The editor is used to configure signals, create new signal definitions, and simulate

signals.

8

DSI eXpress and ATML Pad : Automatic Generation of
UUT Test Models from UUT Diagnostic Models

9 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

UUT Diagnostic
Model

Diagnostic Study

Model Exchange
via DiagML

UUT Test
Model

eXpress is a model-based diagnostics engineering application developed by DSI
International. eXpress supports the design, capture, integration, evaluation and
optimization of system diagnostics, prognostics health management (PHM), systems
testability engineering, failure mode and effects analysis and system safety analysis.

eXpress is integrated with ATML Pad through DiagML, an open XML-based format
used to represent UUT, test, and diagnostic data. DiagML is a precursor of ATML Test
Description.

Design-to-test development flow using eXpress, DiagML, and ATML Pad:
1. Import UUT design data from CAD, SysML, or spreadsheets to eXpress (optional)
2. Develop diagnostic model in eXpress, adding functional dependencies, failure

information, …
3. Develop diagnostic study in eXpress, generating fault trees from the diagnostic

model
4. Export fault tree data to DiagML
5. Import DiagML into ATML Pad. The ATMl document will contain “sequence” test

groups, tests, and test points. The test behavior will be undefined.
6. Use ATML Pad to add detailed test information: test operations, signals,

9

measurements, limits, …
7. Export ATML Test Description from ATML Pad
8. Use ATML Test Description to generate test programs

9

ATML Pad and NI TestStand ATML
Toolkit: Automatic Code Generation

10 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

NI TestStand
Sequence

CVI Source Code

Model Exchange via
ATML Test Description

UUT Test
Model

The NI TestStand ATML Toolkit is an add-on component of National Instruments (NI)
TestStand. It allows TestStand to translate ATML Test Description documents into
TestStand sequences and code modules written in LabVIEW or LabWindows™/CVI.

The NI TestStand ATML Toolkit is integrated with ATML Pad through a plug-in, using
the standard ATML Test Description format. ATML Pad invokes the translator on the
model that is currently loaded. The translator generates the test program and opens
the generated sequence file in TestStand.

10

Applications - TPS lifecycle support

11 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Product
Engineering

Test
Engineering

Test Program GenerationTest & UUT
Description

Test
Program

TPS
Conversion

TPS
Rehosting

TPS
Maintenance

TPS
Development

Test
Program
(Rev n)

Test
Program

(Rev n + 1)

New Test
Program

Test & UUT
Description

(Rev n)

Test & UUT
Description

(Rev n)

Test & UUT
Description

(Rev n)

Modification

Test Program Update

Test Program Generation

(allocation for new ATE)

Test Program Regeneration

(new test language)

TPS
Acquisition Product

Data
Test & UUT
Description

TPS
Acquisition
Management

TPS Acquisition: An initial, high-level Test Description is created. This includes, for
example, power requirements, signal requirements, and a test list. The high-level
description allows the estimation of development time, cost, risk, and reuse potential
through comparison with past developments.

TPS Development: Details are added to the Test Description. This includes test
parameters, test results, test sequences, and detailed test operations. The description
has a sufficient level of detail to enable automatic test program generation.

TPS Maintenance: Changes are made to the Test Description; the auto-generated test
program is updated automatically. This ensures consistency between the Test
Description (and thus test program documentation) and the test program.

TPS Rehosting: The test program requirements are re-allocated to the capabilities of
a new ATE. A new revision of the test program is generated.

TPS Conversion: New code is generated in a different test language. A new test
program is generated.

11

Applications - ATS multi-platform
support

NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Product
Data

Product
Engineering

Test
Engineering

Test Program
GenerationATML Test

Description
Test

Program 1

Modification

Test
Program 2

Test Program
GenerationATML Test

Description

Test
Program 1

(Rev n)

Test
Program 2

(Rev n)

ATS
1

ATS
2

ATS
1

ATS
2

1. From a common set of requirements, two test programs are generated, targeting
two different hardware platforms (ATS 1 and ATS 1)

2. If a modification is needed (ex. correction or optimization), the modification is
performed on the Test Description model. New revisions of the Test Programs are
auto-generated.

This approach eliminates the need to modify two different test programs and
preserves their consistency automatically.

12

Standards-Based, Signal-Oriented Model

Model-Based Test Development

13 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

Signal &
Test

Definition

Require-
ments

Description

Code
Generation Analysis

Verification
Validation

Test
Execution

Results
Evaluation

Model
Optimiza-

tion

All stages of test program development (requirements analysis, design,
implementation, use, maintenance, and optimization) are based on a common model,
using industry-standard formats and signal abstractions.

Summary: COTS Tools and Industry-
Standard Data Formats

• Data ownership

• Long-term sustainability of Automatic Test Systems

Storage of UUT, Test, and
Maintenance data in vendor-

independent formats

• Automatic code generation

• Full traceability to requirements
Model-based test

development

• Multi-platform supportSignal-oriented models

• Through-life support for UUTs

• Feedback loops to optimize design, test, and maintenance
Multi-vendor solutions

14 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

14

Glossary & Abbreviations

• UUT = Unit Under Test: The entity to be tested. It may range from a simple
component to a complete system

• Test program: A program specifically intended for the testing of a UUT

• TPS = Test Program Set: The complete set of hardware, software, and
documentation needed to evaluate a UUT on a given test system

• ATE = Automatic Test Equipment: a system providing a test capability for
the automatic testing of one or more UUTs. The ATE system consists of a
controller, test resource devices, and peripherals. The controller directs
the testing process and interprets the results. The test resource devices
provide stimuli, measurements, and physical interconnections.

• ATS = Automatic Test System: Includes the ATE as well as all support
equipment, software, test programs, and adapters.

• ATML = Automatic Test Markup Language: a family of standards specified
in IEEE 1671, IEEE 1636.1, and IEEE 1641

15 NON-PROPRIETARY. © Reston Software. All Rights Reserved.

15

Thank you!

16

This Photo is licensed under CC BY-NC

16

